极端环境下航空航天复合材料设计进展及应用现状

周少兰, 唐晶晶, 张力文, 孙道岑, 蒋龙, 吴道勋, 周富, 赵新, 韦禹

装备环境工程 ›› 2026, Vol. 23 ›› Issue (1) : 40-49.

PDF(2327 KB)
PDF(2327 KB)
装备环境工程 ›› 2026, Vol. 23 ›› Issue (1) : 40-49. DOI: 10.7643/ issn.1672-9242.2026.01.006
航空航天装备

极端环境下航空航天复合材料设计进展及应用现状

  • 周少兰1, 唐晶晶1, 张力文2, 孙道岑1, 蒋龙1, 吴道勋1*, 周富1, 赵新1, 韦禹1
作者信息 +

Design Progress and Application Status of Aerospace Composite Materials in Extreme Environments

  • ZHOU Shaolan1, TANG Jingjing1, ZHANG Liwen2, SUN Daocen1, JIANG Long1, WU Daoxun1*, ZHOU Fu1, ZHAO Xin1, WEI Yu1
Author information +
文章历史 +

摘要

综述了极端环境下航空航天复合材料的设计进展及应用现状。首先分析了国内外复合材料的研究现状,阐述了复合材料在军民用飞机、运载火箭等装备中的典型应用场景。在此基础上,重点探讨了温度载荷、机械冲击和化学腐蚀等极端环境因素对复合材料性能的影响机理,揭示了多场耦合作用下材料的损伤演化规律。在设计方法层面,深入阐述了组分设计、结构设计和铺层设计3个关键环节的研究进展,特别强调了多尺度模拟方法和智能优化算法在提升材料设计方面的重要作用。最后基于当前技术瓶颈与未来需求,对航空航天复合材料的发展趋势进行了展望。

Abstract

This paper comprehensively reviews the design progress and application status of aerospace composite materials under extreme conditions. Firstly, it analyzes the current research status of composite materials at home and abroad and elaborates on their typical application scenarios in military and civil aircraft, launch vehicles, and other equipment. On this basis, it focuses on discussing the influence mechanisms of extreme environmental factors such as temperature load, mechanical impact, and chemical corrosion on the performance of composite materials, and reveals the damage evolution laws of materials under multi-field coupling effects. In terms of design methods, it elaborates in depth on the research progress of three key links of component design, structural design, and ply design, and particularly emphasizes the important role of multi-scale simulation methods and intelligent optimization algorithms in improving material design. Finally, based on the current technical bottlenecks and future demands, it looks forward to the development trends of aviation composite materials.

关键词

复合材料 / 极端环境 / 航空应用 / 材料设计 / 多尺度模拟 / 智能算法

Key words

composite materials / extreme environment / aviation application / material design / multi-scale simulation / intelligent algorithm

引用本文

导出引用
周少兰, 唐晶晶, 张力文, 孙道岑, 蒋龙, 吴道勋, 周富, 赵新, 韦禹. 极端环境下航空航天复合材料设计进展及应用现状[J]. 装备环境工程. 2026, 23(1): 40-49 https://doi.org/10.7643/ issn.1672-9242.2026.01.006
ZHOU Shaolan, TANG Jingjing, ZHANG Liwen, SUN Daocen, JIANG Long, WU Daoxun, ZHOU Fu, ZHAO Xin, WEI Yu. Design Progress and Application Status of Aerospace Composite Materials in Extreme Environments[J]. Equipment Environmental Engineering. 2026, 23(1): 40-49 https://doi.org/10.7643/ issn.1672-9242.2026.01.006
中图分类号: TJ04   

参考文献

[1] 董绍明, 周海军, 胡建宝, 等.浅析极端环境下服役陶瓷基复合材料的构建[J].中国材料进展, 2015, 34(10): 741-750.
DONG S M, ZHOU H J, HU J B, et al.The Design of Ceramic Matrix Composites Served in Extreme Environment[J].Materials China, 2015, 34(10): 741-750.
[2] 石文静, 高峰, 柴洪友.复合材料在航天器结构中的应用与展望[J].宇航材料工艺, 2019, 49(4): 1-6.
SHI W J, GAO F, CHAI H Y.Application and Expectation of Composite in Spacecraft Structure[J].Aerospace Materials & Technology, 2019, 49(4): 1-6.
[3] HARLE S M.Durability and Long-Term Performance of Fiber Reinforced Polymer (FRP) Composites: A Review[J].Structures, 2024, 60: 105881.
[4] GUO M F, YU K X, YANG J P, et al.Polymer-Matrix Composite Design for Extreme Environments in Aerospace Propulsion[J].Acta Astronautica, 2025, 236: 1130-1140.
[5] ATAKOK G, YOLDAS D M, ATAKOK G, et al.Comparison of GFRP (Glass Fiber-Reinforced Polymer) and CFRP (Carbon Fiber-Reinforced Polymer) Composite Adhesive-Bonded Single-Lap Joints Used in Marine Environments[J].Sustainability, 2024, 16(24): 11105-11110.
[6] ANDREW J J, SRINIVASAN S M, AROCKIARAJAN A, et al.Parameters Influencing the Impact Response of Fiber-Reinforced Polymer Matrix Composite Materials: A Critical Review[J].Composite Structures, 2019, 224: 111007.
[7] GHOSH G, BISWAS D, BHATTACHARYYA R.Advancements in Multiscale Modeling of Damage in Composite Materials: A Comprehensive Review[J].Composites Part B: Engineering, 2025, 307: 112819.
[8] KORKU M, İLHAN R, FEYZULLAHOĞLU E.Investigation of Effects of Environmental Conditions on Wear Behaviors of Glass Fiber Reinforced Polyester Composite Materials[J].Polymer Composites, 2025, 46(1): 355-371.
[9] 马立敏, 张嘉振, 岳广全, 等.复合材料在新一代大型民用飞机中的应用[J].复合材料学报, 2015, 32(2): 317-322.
MA L M, ZHANG J Z, YUE G Q, et al.Application of Composites in New Generation of Large Civil Aircraft[J].Acta Materiae Compositae Sinica, 2015, 32(2): 317-322.
[10] 宁莉, 杨绍昌, 冷悦, 等.先进复合材料在飞机上的应用及其制造技术发展概述[J].复合材料科学与工程, 2020(5): 123-128.
NING L, YANG S C, LENG Y, et al.Overview of the Application of Advanced Composite Materials on Aircraft and the Development of Its Manufacturing Technology[J].Composites Science and Engineering, 2020(5): 123-128.
[11] 杨洋.却顾所来径, 苍苍横翠微——国产大型客机C919复合材料发展侧记[J].科技中国, 2017(7): 53-55.
YANG Y.Looking Back, I Saw My Path, Lie in Levels of Deep Shadow—Sidelights on the Development of C919 Composite Materials for Domestic Large Passenger Aircraft[J].China Scitechnology Business, 2017(7): 53-55.
[12] 崔红, 李瑞珍.运载火箭固体发动机复合材料技术发展现状[J].宇航材料工艺, 2014, 44(3): 1-5.
CUI H, LI R Z.Development Status of Composite Material for Solid Booster of Launcher System[J].Aerospace Materials & Technology, 2014, 44(3): 1-5.
[13] 湛利华, 关成龙, 黄诚, 等.航天低温复合材料贮箱国内外研究现状分析[J].航空制造技术, 2019, 62(16): 79-87.
ZHAN L H, GUAN C L, HUANG C, et al.Analysis of Research Status of Composite Cryotank for Space[J].Aeronautical Manufacturing Technology, 2019, 62(16): 79-87.
[14] 李会民, 季元.FRP在战术导弹中的应用及发展现状[J].战术导弹技术, 2025(4): 27-38.
LI H M, JI Y.Application and Development Status of FRP in Tactical Missiles[J].Tactical Missile Technology, 2025(4): 27-38.
[15] SHINDO Y, UEDA S, NISHIOKA Y.Mechanical Behavior of Woven Composites at Low Temperatures[J].Fusion Engineering and Design, 1993, 20: 469-474.
[16] DU X B, LI D S, JIANG L, et al.Experimental Study on the Low-Temperature Compression Performance of 3D Five-Directional Braided Composites Applied to Extreme Environments[J].Materials Letters, 2022, 324: 132767.
[17] JIA Z A, LI T T, CHIANG F P, et al.An Experimental Investigation of the Temperature Effect on the Mechanics of Carbon Fiber Reinforced Polymer Composites[J].Composites Science and Technology, 2018, 154: 53-63.
[18] KHALID A A.The Effect of Testing Temperature and Volume Fraction on Impact Energy of Composites[J].Materials & Design, 2006, 27(6): 499-506.
[19] 谭伟, 那景新, 任俊铭, 等.高温环境下碳纤维增强树脂复合材料的层间力学性能老化行为与失效预测[J].复合材料学报, 2020, 37(4): 859-868.
AN W, NA J X, REN J M, et al.Aging Behavior and Failure Prediction of Interlaminar Mechanical Properties of Carbon Fiber Reinforced Polymer Composite at High Temperature[J].Acta Materiae Compositae Sinica, 2020, 37(4): 859-868.
[20] WANG H L, SUN B Z, GU B H.Numerical Modeling on Compressive Behaviors of 3-D Braided Composites under High Temperatures at Microstructure Level[J].Composite Structures, 2017, 160: 925-938.
[21] 周锦地.基于多尺度方法的碳纤维复合材料温度环境下力学行为研究[D].哈尔滨: 哈尔滨工业大学, 2022.
ZHOU J D.Study of Mechanical Behavior of Carbon Fiber Composites under Temperature Environment Based on Multi-Scale Approach[D].Harbin: Harbin Institute of Technology, 2022.
[22] ZHANG N, ZHOU G M, GUO X M, et al.High-Velocity Impact Damage and Compression after Impact Behavior of Carbon Fiber Composite Laminates: Experimental Study[J].International Journal of Impact Engineering, 2023, 181: 104749.
[23] LIU H B, LIU J, DING Y Z, et al.The Behaviour of Thermoplastic and Thermoset Carbon Fibre Composites Subjected to Low-Velocity and High-Velocity Impact[J].Journal of Materials Science, 2020, 55(33): 15741-15768.
[24] WAGNER T, HEIMBS S, FRANKE F, et al.Experimental and Numerical Assessment of Aerospace Grade Composites Based on High-Velocity Impact Experiments[J].Composite Structures, 2018, 204: 142-152.
[25] JEAN-ST-LAURENT M, DANO M L, POTVIN M J.Effect of Extreme Cold Temperatures on Quasi-Static Indentation and Impact Behavior of Woven Carbon Fiber Epoxy Composite Sandwich Panels with Nomex Honeycomb Core[J].Journal of Sandwich Structures & Materials, 2022, 24(1): 66-100.
[26] 牛一凡, 李璋琪, 朱晓峰.全湿热场下碳纤维/环氧树脂复合材料弯曲性能及寿命预测[J].复合材料学报, 2020, 37(1): 104-112.
NIU Y F, LI Z Q, ZHU X F.Flexural Properties and Life-Time Estimation of Carbon Fiber/Epoxy Composite under Hygrothermal Conditions[J].Acta Materiae Compositae Sinica, 2020, 37(1): 104-112.
[27] SCALICI T, FIORE V, VALENZA A.Experimental Assessment of the Shield-to-Salt-Fog Properties of Basalt and Glass Fiber Reinforced Composites in Cork Core Sandwich Panels Applications[J].Composites Part B: Engineering, 2018, 144: 29-36.
[28] REIS P N B, NETO M A, AMARO A M.Effect of the Extreme Conditions on the Tensile Impact Strength of GFRP Composites[J].Composite Structures, 2018, 188: 48-54.
[29] 纪朝辉, 刘阔, 白云, 等.飞机结构复合材料循环加速老化的研究[J].中国民航大学学报, 2014, 32(2): 36-39.
JI (C/Z)H, LIU K, BAI Y, et al.Study on Composite of Aircraft Structures under Accelerated Ageing Conditions[J].Journal of Civil Aviation University of China, 2014, 32(2): 36-39.
[30] 王登霞, 孙岩, 谢可勇, 等.碳纤维增强树脂基复合材料模拟海洋环境长期老化及失效行为[J].复合材料学报, 2022, 39(3): 1353-1362.
WANG D X, SUN Y, XIE K Y, et al.Long Term Aging and Failure Behaviors of Carbon Fiber Reinforced Polymer Composites in Simulated Marine Environments[J].Acta Materiae Compositae Sinica, 2022, 39(3): 1353-1362.
[31] GONZÁLEZ E V, MAIMÍ P, SAINZ DE AJA J R, et al.Effects of Interply Hybridization on the Damage Resistance and Tolerance of Composite Laminates[J].Composite Structures, 2014, 108: 319-331.
[32] 马腾, 贾智源, 关晓方, 等.混杂比对单向碳-玻层间混编复合材料0°压缩和弯曲性能的影响[J].复合材料学报, 2017, 34(4): 530-537.
MA T, JIA Z Y, GUAN X F, et al.Effects of Hybrid Ratio on the Axial Compressed and Flexural Properties of Unidirectional Inter-Layer Carbon-Glass Hybrid Composites[J].Acta Materiae Compositae Sinica, 2017, 34(4): 530-537.
[33] DONG C S, DAVIES I J.Flexural Properties of Glass and Carbon Fiber Reinforced Epoxy Hybrid Composites[J].Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2013, 227(4): 308-317.
[34] DOS SANTOS J K D, DA CUNHA R D, DE AMORIM JUNIOR W F, et al.The Variation in Low Speed Impact Strength on Glass Fiber/Kevlar Composite Hybrids[J].Journal of Composite Materials, 2020, 54: 3009-3019.
[35] DICKSON A N, BARRY J N, MCDONNELL K A, et al.Fabrication of Continuous Carbon, Glass and Kevlar Fibre Reinforced Polymer Composites Using Additive Manufacturing[J].Additive Manufacturing, 2017, 16: 146-152.
[36] ZHONG Y C, TRAN L Q N, KUREEMUN U, et al.Prediction of the Mechanical Behavior of Flax Polypropylene Composites Based on Multi-Scale Finite Element Analysis[J].Journal of Materials Science, 2017, 52(9): 4957-4967.
[37] ZHAO Z Q, DANG H Y, ZHANG C, et al.A Multi-Scale Modeling Framework for Impact Damage Simulation of Triaxially Braided Composites[J].Composites Part A: Applied Science and Manufacturing, 2018, 110: 113-125.
[38] HUANG W, XU R, YANG J, et al.Data-Driven Multiscale Simulation of FRP Based on Material Twins[J].Composite Structures, 2021, 256: 113013.
[39] 于雅琳, 李健芳, 黄智彬, 等.复合材料负泊松比格栅结构设计及力学性能评价[J].复合材料学报, 2021, 38(4): 1107-1114.
YU Y L, LI J F, HUANG Z B, et al.Structural Design and Mechanical Characterization of an Auxetic Advanced Grid Structure Composite[J].Acta Materiae Compositae Sinica, 2021, 38(4): 1107-1114.
[40] 童小伟, 黄妙华.碳纤维复合材料保险杠铺层优化设计研究[J].材料导报, 2017, 31(S1): 477-480.
TONG X W, HUANG M H.Optimization Design of Carbon Fiber Reinforced Plastic Bumper Layer[J].Materials Reports, 2017, 31(S1): 477-480.
[41] DHURVEY P, PATIDAR A K, SONI S.Design Optimization of Composite Plate under Transverse Loading Using Ritz Method[C]//Proceedings of the International Conference on Advances in Materials and Manufacturing Applications (IConAMMA).Bengaluru: INDIA, 2020.
[42] SZKLAREK K, GAJEWSKI J, SZKLAREK K, et al.Optimisation of the Thin-Walled Composite Structures in Terms of Critical Buckling Force[J].Materials, 2020, 13(17): 3881.
[43] NIKBAKT S, KAMARIAN S, SHAKERI M.A Review on Optimization of Composite Structures Part I: Laminated Composites[J].Composite Structures, 2018, 195: 158-185.
[44] 陈静, 彭博, 王登峰, 等.碳纤维增强复合材料电池箱轻量化设计[J].汽车工程, 2020, 42(2): 257-263.
CHEN J, PENG B, WANG D F, et al.Lightweight Design of Carbon Fiber Reinforced Composite Battery Box[J].Automotive Engineering, 2020, 42(2): 257-263.
[45] 杨洋, 代文猛, 年春波.基于自适应遗传算法的层合板铺层优化设计[J].机械制造与自动化, 2020, 49(3): 22-25.
ANG Y, DAI W M, NIAN C B.Optimum Design of Composite Laminates Based on Adaptive Genetic Algorithms[J].Machine Building & Automation, 2020, 49(3): 22-25.
[46] 刘哲, 金达锋, 范志瑞.基于代理模型的复合材料带加强筋板铺层优化[J].清华大学学报(自然科学版), 2015, 55(7): 782-789.
LIU Z, JIN D F, FAN Z R.Laminate Optimization of a Composite Stiffened Panel Based on Surrogate Model[J].Journal of Tsinghua University (Science and Technology), 2015, 55(7): 782-789.
[47] 钱杨情.碳纤维复合材料特性参数识别及其结构铺层优化[D].湘潭: 湘潭大学, 2020.
QIAN Y Q.Characteristic Parameters Identification and Structural Lamination Optimization about the Carbon Fiber Reinforced Composites[D].Xiangtan: Xiangtan University, 2020.
[48] 常楠, 杨伟, 王伟, 等.基于复合材料层板稳定性的铺层参数优化设计方法[J].机械强度, 2008, 30(1): 148-151.
CHANG N, YANG W, WANG W, et al.New Method of Ply Optimiztion Design for Stability of Composite Laminates[J].Journal of Mechanical Strength, 2008, 30(1): 148-151.
[49] 王伟, 常新龙, 张有宏, 等.非对称铺层T700复合材料层合板铺层顺序优化[J].科学技术与工程, 2021, 21(8): 3051-3056.
WANG W, CHANG X L, ZHANG Y H, et al.Optimization of Stacking Sequence of Asymmetrical Ply T700 Composite Laminates[J].Science Technology and Engineering, 2021, 21(8): 3051-3056.
[50] 王伟, 王策, 金晶, 等.无人机复合材料蒙皮区域铺层顺序优化及稳定性校核[J].航空精密制造技术, 2023, 59(5): 20-23.
WANG W, WANG C, JIN J, et al.Optimization of Laying Sequence and Stability Check of Skin Area of a Certain Type of UAV Composite Material[J].Aviation Precision Manufacturing Technology, 2023, 59(5): 20-23.

PDF(2327 KB)

Accesses

Citation

Detail

段落导航
相关文章

/